A Solvent-free Synthesis of Zn-Al Layered Double Hydroxides

Ramesh Chitrakar, Satoko Tezuka, Akinari Sonoda,* Kohji Sakane, Kenta Ooi, and Takahiro Hirotsu Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu 761-0395

(Received December 12, 2006; CL-061455; E-mail: a.sonoda@aist.go.jp)

We have demonstrated for the first time a solvent-free synthesis of Zn–Al layered double hydroxides, Zn–Al LDH(Cl), by grinding solid ZnO and AlCl $_3$ +6H $_2$ O and then by autoclaving at 150 °C for 1 day without the addition of water and alkaline solution.

Synthetic hydrotalcite-like materials, also known as layered double hydroxides (LDH), have a general formula $[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}]^{x+}$ $[(A^{m-})_{x/m}\cdot nH_{2}O]^{x-}$, which is denoted as $M_{1}M_{2}$ –LDH(A), where the brucite-type layers have M_{1}^{2+} cations (Mg, Zn, Cu, Co, and Ca) and the M_{2}^{3+} cations (Al and Fe) at the octahedral centers, and anions, A^{m-} , such as CO_{3}^{2-} , Cl^{-} , or NO_{3}^{-} , are occupied between the layers to balance the charge. A variety of LDHs materials has been synthesized for their applications. Interestingly, Zn–Al LDH(Cl) materials have been studied as hosts for incorporation of amino acids and DNA in the interlayer. 6,7

There have been a number of methods for synthesis of Zn–Al LDH materials; a coprecipitation method at constant pH,¹ a urea method,⁸ and a reconstruction method.^{9,10} Recently, Zn–Al LDH(Cl) has been synthesized by a biomineralization process,¹¹ which also causes the contamination of carbon dioxide in the material. The synthesis of Zn–Al LDH(Cl) by the conventional coprecipitation method involves the addition of alkaline solution to control pH.¹

We have succeeded the solvent-free synthesis of Zn–Al LDH(Cl) among several explored systems of M_1 – M_2 pairs. This study is the first demonstration of the solvent-free synthesis of Zn–Al LDH(Cl). The phosphate uptake of the resultant material is also described.

ZnO $(2\,g)$ and AlCl₃·6H₂O $(2-3\,g)$ (Wako Chemicals, Japan) were mixed in Zn/Al molar ratios of 2 and 3, ground, and autoclaved at 150 °C in a Teflon-lined stainless steel vessels $(50\,cm^3)$ for 1 day. After cooling to room temperature, the solid materials were washed with deionized water, and air-dried. The resultant materials are abbreviated as ZnAl–LDH(Cl)-1 and ZnAl–LDH(Cl)-2 for the Zn/Al molar ratios of 2 and 3, respectively.

XRD patterns were recorded on a Rigaku type RINT 1200 X-ray diffractometer with a graphite monochromator with Cu K α radiation ($\lambda=0.15406\,\mathrm{nm}$). Chemical analysis of Zn and Al was carried out by using a Seiko SPS 7800 atomic emission plasma spectrometer. Chloride content was determined by ion chromatography. Carbon content was determined by a carbon analyzer, Horiba EMIA-U511.

Phosphate exchange was carried out by equilibrating ZnAl–LDH(Cl)-2 $(0.05\,\mathrm{g})$ with NaH₂PO₄ solution $(50\,\mathrm{cm}^3)$ with different concentrations $(5{\text -}90\,\mathrm{mg}{\text -}P/\mathrm{dm}^3)$ at pH 5.5 for 3 days at room temperature. Phosphate concentration in solution phase was determined by persulfate UV oxidation method¹² using a

portable colorimeter, Model DR/700, HACH Co., U.S.A.

The diffraction peaks of ZnO can be indexed to a hexagonal structure with lattice parameters of $a=0.324\,\mathrm{nm}$ and $c=0.519\,\mathrm{nm}$. The formation of LDH phase was observed by measuring X-ray diffraction patterns of the products with different autoclave times (Figure 1). The formation of a well-crystallized LDH phase without any impurity is attained completely after 24 h. The Miller indexing in Figure 1 is referred to a rhomohedral (R3m) symmetry. The calculated lattice parameters are $a=0.308\,\mathrm{nm}$ and $c=2.344\,\mathrm{nm}$ for ZnAl-LDH(Cl)-1 and $a=0.308\,\mathrm{nm}$ and $c=2.344\,\mathrm{nm}$ for ZnAl-LDH(Cl)-2. These values are in agreement with those reported for Zn-Al LDH prepared by a coprecipitation method $a=0.308\,\mathrm{nm}$ and $a=0.308\,\mathrm{nm}$

SEM image of ZnAl-LDH(Cl)-2 shows the packed agglomerates of sheet-like particles with sizes around 1 µm.

Analysis data of ZnAl-LDH(Cl)-1 and -2 materials are given in Table 1. The Zn/Al molar ratios of 1.74 and 1.94 at 24 h are smaller than those in the starting mixtures; this difference is probably due to the uncompleted reaction of Zn^{2+} ions.

The formulae show that positively charged brucite layers are balanced by the negative charge of the anions present between the layers. The ratios $(Cl^- + 2CO_3^{2-})/Al^{3+}$ are 0.94 and 1.02 for ZnAl–LDH(Cl)-1 and -2, respectively, as expected for pure LDH. The ZnAl–LDH(Cl)-2 has a Zn/Al molar ratio close to 2, which is consistent with the ideal LDH formula $Zn_2Al(OH)_6(Cl)\cdot nH_2O$.

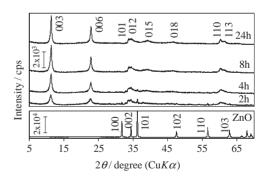
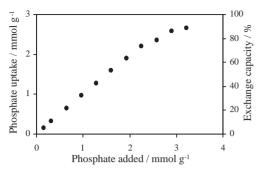



Figure 1. XRD patterns of ZnAl–LDH(Cl)-1 at different intervals of autoclave at $150\,^{\circ}$ C.

Table 1. Chemical compositions of Zn–Al LDH(Cl)

Material	Zn/Ala	Formula
ZnAl-LDH(Cl)-1	2 (1.74) (1.77) [†]	[Zn _{0.61} Al _{0.35} (OH) ₂][Cl _{0.31} (CO ₃) _{0.01} •0.78H ₂ O]
ZnAl-LDH(Cl)-2	3 (1.94)	$ \begin{split} &[Zn_{0.66}Al_{0.34}(OH)_2][Cl_{0.34}\\ &(CO_3)_{0.003} \!\cdot\! 0.86H_2O] \end{split} $

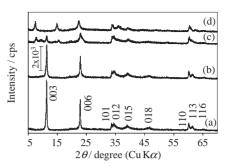
 $^{^{}a}$ Molar ratio. The values in parenthesis denote resultant materials after 24 and 8 h^{\dagger} .

Figure 2. Phosphate uptake on ZnAl–LDH(Cl)-2. Weight, 0.05 g; Vol, 50 cm³; Conc, 5–90 mg-P/dm³; Contact time, 3 days; Equilibrium pH, 5.5.

Solvent-free reactions between ZnO and AlCl₃·6H₂O at 150 °C in a closed system to form a Zn–Al LDH can be expressed as follows:

$$AlCl_3 \cdot 6H_2O \rightarrow AlCl_3 + 6H_2O \tag{1}$$

$$ZnO + H_2O \rightarrow Zn(OH)_2 \rightarrow Zn^{2+} + 2OH^-$$
 (2)


$$AlCl3 + 3OH- \rightarrow Al(OH)3 + 3Cl-$$
 (3)

$$xZn^{2+} + Al(OH)_3 + (2x - 1)OH^- + yH_2O + Cl^-$$

 $\rightarrow Zn_xAl(OH)_{2+2x}Cl^- \cdot yH_2O$ (4)

Water vapor generated from $AlCl_3 \cdot 6H_2O$ reacts with basic ZnO particles to form $Zn(OH)_2$ on the oxide particle surfaces. The dissociation of $Zn(OH)_2$ releases Zn^{2+} and OH^- ions. OH^- ions react with $AlCl_3$ to form amorphous $Al(OH)_3$. The deposition of Zn^{2+} , Cl^- , and OH^- ions occurs on the surface of $Al(OH)_3$ particles, forming a pre-LDH to yield well crystalized LDH material in 1 day. Washing of the crude product with distilled water removes unreacted zinc ions.

The phosphate exchange on ZnAl–LDH(Cl)-2 was carried out at pH 5.5. At this pH, considerable phosphate species are $\rm H_2PO_4^-$ (97%) and $\rm HPO_4^{2-}$ (3%), because of p $K_1=2.15$, p $K_2=7.20$, and p $K_3=12.33$ for phosphoric acid. The theoretical exchange capacity of the material is 3.0 mmol/g based on Cl⁻ content. The phosphate uptake (mmol/g) on the material is plotted with the mole of phosphate added (per the weight of the material mmol/g) in solution (Figure 2). The slope of the curve shows that almost all the added $\rm H_2PO_4^-$ ions are exchanged with the Cl⁻ ions between the layers of the material, indicating high affinity for $\rm H_2PO_4^-$ ions. The amount of $\rm H_2PO_4^-$ ions exchanged reaches 88% of the theoretical exchange capacity.

XRD patterns of phosphate-exchanged ZnAl-LDH(Cl)-2 with increasing phosphate contents are shown in Figure 3. The original material ZnAl-LDH(Cl)-2 has an interlayer distance d_{003} of 0.78 nm with a layer thickness of 0.48 nm estimated from brucite. For the 10% exchange with phosphate, although the XRD pattern is almost the same as that of the original material except for a slight decrease in crystallinity, and a new weak signal due to phosphate uptake appears at $2\theta = 7.8^{\circ}$ (d = 1.13 nm). This signal is increased with a lower shift of 2θ when the phosphate exchange is increased. For more than 40% exchange

Figure 3. XRD patterns of (a) ZnAl–LDH(Cl)-2 and ZnAl–LDH(Cl)-2 with phosphate uptakes (b) 10%, (c) 40%, and (d) 88%.

with phosphate, the shifted (003), (006), and (009) signals due to the phosphate uptake become dominant, while the original (003) and (006) signals disappear completely for the 88% exchange. The shift of (00*l*) reflections to lower 2θ values indicates an increase in the interlayer distance. The (003) reflection corresponds to a *d* value of 1.18 nm ($2\theta = 7.5^{\circ}$). The interlayer distance of 1.18 nm for the ZnAl–LDH(Cl)-2 with the 88% exchange is in agreement with the reported values for HPO₄²⁻ exchanged types of Zn–Al LDH(Cl) materials synthesized by other methods. ^{13,14} The broadness of (00*l*) reflections probably reflects a turbostratic disorder of the layers by the exchange of phosphate ions.

In conclusion, a well crystalline Zn–Al LDH(Cl) material has been synthesized for the first time by a solvent-free synthesis. Phosphate exchange capacity at pH 5.5 is 2.6 mmol/g, which is 88% of the theoretical anion exchange capacity.

References

- 1 S. Miyata, Clays Clay Miner. 1975, 23, 369.
- E. Kanezaki, S. Sugiyama, Y. Ishikawa, J. Mater. Chem. 1995, 5, 1969.
- 3 T. Hibino, Chem. Mater. 2004, 16, 5482.
- 4 R. Ma, Z. Liu, L. Li, N. Iyi, T. Sasaki, *J. Mater. Chem.* **2006**, *16*, 3809.
- 5 S. Tezuka, R. Chitrakar, A. Sonoda, K. Ooi, *Chem. Lett.* **2003**, *32*, 722.
- 6 S. Aisawa, S. Takahashi, W. Ogasawara, Y. Umetsu, E. Narita, *J. Solid State Chem.* **2001**, *162*, 52.
- 7 J. H. Choy, S.-Y. Kwak, J.-S. Park, Y.-J. Jeong, J. Portier, J. Am. Chem. Soc. 1999, 121, 1399.
- 8 U. Costantino, F. Marmottini, M. Nochetti, R. Vivani, *Eur. J. Inorg. Chem.* **1998**, 1439.
- S. P. Newman, W. Jones, P. O'Connor, D. N. Stamires, J. Mater. Chem. 2002, 12, 153.
- 10 Z. P. Xu, G. Q. Lu, Chem. Mater. 2005, 17, 1055.
- 11 S. Vial, J. Ghanbaja, C. Forano, *Chem. Commun.* **2006**, 290.
- 12 Adapted from P. Blystone, P. Larson, International Water Conference, Pittsburgh, Pa, U.S.A., Oct., **1981**.
- 13 M. Badreddine, M. Khaldi, A. Legrouri, A. Barroug, M. Chaouch, A. De Roy, J. P. Besse, *Mater. Chem. Phys.* **1998**, *52*, 235.
- 14 U. Costantino, M. Casciola, L. Massinelli, M. Nochetti, R. Vivani, *Solid State Ionics* 1997, 97, 203.